Recovery of precious metals from E-waste by sustainable porous membranes (ReMe2)

Project leader Chao Xu, Uppsala University

Partners Stockholm University **STUNS Energy**

Project duration 2023-11-06 to 2025-06-30

SWEDISH MINING INNOVATION

Med stöd från

Energimyndigheten FORMAS

Background

E-waste generated worldwide in 2022

Properly recycled

62 M tonnes

7.75 kg per capita

20%

Current E-waste recycling technology

Pyrometallurgy

- **Energy intensive**
- Low selectivity
- **Environmental unfriendly** •

SWEDISH MINING INNOVATION

Value of precious metals in E-waste dumped every year

10 billion USD

- Loss of precious metals
- Environmental issues

Hydrometallurgy

Associate techniques

- **Electrowinning**
- □ Chemical reduction
- □ Adsorption
- Low capital cost
- High selectivity

Goals of the project

- To capture precious metals from E-waste via an efficient and cost-effective membrane separation approach
- "urban mining"
- To develop the recovered precious metals into efficient catalysts

SWEDISH MINING INNOVATION

• To promote E-waste recycling, decrease E-waste disposal, conserve precious metal resources, and drive the growth of

Synthesis and engineering of cost-effective porous organic polymers (POPs)

SWEDISH MINING INNOVATION

POP aerogel

	POP-aerogel-1
A	POP-aerogel-2
~~~~~	
**************************************	POP-aerogel-3
10	
Pore size (nm)	

- Facile and green synthesis
- Low cost (estimated cost: 10 USD/kg)  $\bullet$
- **Highly porous**
- **Mechanically strong**  $\bullet$
- **Chemically stable** lacksquare









### POPs for Au capture from aqueous solutions



- High Au uptake
- High selectivity

SWEDISH MINING INNOVATION



Med stöd från





SWEDISH

MINING

INNOVATION

### **POPs for Pd and Pt capture**



**Potential applications for recovering** Pd and Pt from:

- E-waste
- Waste solutions from • pharmaceutical and chemical industries
- Spent automotive catalysts









### Synthesis and processing of bio-based porous organic polymers



SWEDISH MINING INNOVATION



Freestanding CNF@bio-POP nanopaper

#### Med stöd från









## Upcoming activities and next step

- Test bio-POP and freestanding CNF@bio-POP nanopaper for efficient precious metal capture
- Conduct breakthrough experiments to capture precious metals from mixed solutions
- Focus testing on capturing precious metals from E-waste leaching solutions
- Develop prototypes to advance practical applications of POP materials in E-waste recycling



SWEDISH MINING INNOVATION









# Mining innovation for a sustainable future

SWEDISH MINING INNOVATION

Med stöd från







